
Deep Learning
3.2 Multi-layer Perceptron (MLP)

Dr. Konda Reddy Mopuri
kmopuri@iittp.ac.in

Dept. of CSE, IIT Tirupati

Dr. Konda Reddy Mopuri dlc-3.2/MLP 1



Recap: Linear classifier

1 f(x) = σ(wT x + b)

2 Seen a couple of simple examples: MP neuron and Perceptron
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Linear Classifiers: Shortcomings

Lower capacity: data has to be linearly separable
Some times no hyper-plane can separate the data (e.g. XOR data)

Dr. Konda Reddy Mopuri dlc-3.2/MLP 3



Pre-processing
1 Sometimes, data specific pre-processing makes the data linearly

separable

2 Consider the xor case
φ(x) = φ(xu, xv) = (xu, xv, xuxv)

3 Consider the perceptron in the new space f(x) = σ(wTφ(x) + b)
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Pre-processing
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Pre-processing

1 Recap the polynomial regression, by increasing the degree D, we can
increase the model capacity

2 Also, remember the Bias-Variance decomposition: for reducing the
bias error, we increased the model capacity

3 Feature design (or pre-processing) may also be another way to reduce
the capacity without affecting (or improving) the bias
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Extending Linear Classifier

1 Linear classifier f(x) = σ(wT x + b) from RD → R where
w and x ∈ RD

can be extended to multi-dimension output
f(x) = σ(Wx + b) from RD → RC where
W ∈ RC×D and b ∈ RC , and σ is applied element-wise
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Single unit to a layer of Perceptrons
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Formal Representation

1 Latter is known as an MLP: Multi-Layered Perceptron (i.e,
Multi-Layered network of Perceptrons)

2 can be represented as:
x(0) = x,
∀l = 1, . . . , L, x(l) = σ(W(l)T x(l−1) + b(l)), and
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MLP
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Nonlinear Activation

1 Note that σ is nonlinear

2 If it is an affine function, the full MLP becomes a complex affine
transformation (composition of a series of affine mappings)
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Nonlinear Activation

Familiar activation functions

Hyperbolic Tangent (Tanh) x→ 2
1+e−2x − 1 and Rectified Linear Unit

(ReLU) x→ max(0, x) respectively
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Universal Approximation using ReLU functions

1 We can approximate any function f from [a, b] to R with a linear
combination of ReLU functions

2 Let’s approximate the following function using a bunch of ReLUs:
n1 = ReLU(−5x − 7.7), n2 = ReLU(−1.2x − 1.3), n3 = ReLU(1.2x + 1), n4 =

ReLU(1.2x − 0.2), n5 = ReLU(2x − 1.1), n6 = ReLU(5x − 5)
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Universal Approximation using ReLU functions

1 Appropriate combination of these ReLUs:
−n1 − n2 − n3 + n4 + n5 + n6

2 Note that this also holds in case of other activation functions with
mild assumptions.
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Universal Approximation Theorem

1 We can approximate any continuous function ψ : RD → R with one
hidden layer of perceptrons

2 x→ wTσ(Wx + b)
b ∈ RC ,W ∈ RC×D,w ∈ RC , and x ∈ RD

3 Better approximation requires larger hidden layer (C)
Theorem doesn’t discuss their relation
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MLP for regression
1 Output is a continuous variable in RD

Output layer has that many perceptrons (When D = 1, regresses a
scalar value)
Generally employs a squared error loss

2 Can have an arbitrary depth (number of layers)
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MLP for classification
1 Categorical output in RC where C is the number of categories

2 Predicts the scores/confidences/probabilities towards each category
Then converts into a pmf
Employs loss that compares the probability distributions (e.g.
cross-entropy)

3 Can have an arbitrary depth
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